If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+34x=71000
We move all terms to the left:
x^2+34x-(71000)=0
a = 1; b = 34; c = -71000;
Δ = b2-4ac
Δ = 342-4·1·(-71000)
Δ = 285156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{285156}=534$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-534}{2*1}=\frac{-568}{2} =-284 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+534}{2*1}=\frac{500}{2} =250 $
| 16x+52=72 | | 1/2(4x-6)+1/3(3-9x)=-2/5(10x-15)-11 | | 19=4c+3 | | (x–2)/3+1=2x/7 | | 2x(X+3)=80 | | 0.2x^2+x=3.6 | | (2y+3)/5=3y–6 | | (2y+3)^2=0 | | x/3-4=x/2-7 | | -5s+8=-6s | | -7x^2+4x+11=0 | | -5s+8=6s | | x^2−13x+42=0 | | 4x=-2x+22 | | 3b-11=-5 | | -5+y=10+9-7y | | y+1/y=12 | | 3x^2+12x+10=1 | | -4g-5=-7g+10 | | y+y/1=12 | | X+5=3x+6 | | 12g+5=41 | | (e+3)×3=15 | | 4k=3k+8 | | 20v+7-4v+2v=3v+33v+1 | | 6.1x=7.8 | | 5k+9=1+4k | | 6t=9t-9 | | 6.1x=7.7 | | x-0.4x=189000 | | 5-6f=-3-5f | | -9+2w=5w |